A Spatio-Temporal Analysis of Matrix Protein and Nucleocapsid Trafficking during Vesicular Stomatitis Virus Uncoating

نویسندگان

  • Chad E. Mire
  • Judith M. White
  • Michael A. Whitt
چکیده

To study VSV entry and the fate of incoming matrix (M) protein during virus uncoating we used recombinant viruses encoding M proteins with a C-terminal tetracysteine tag that could be fluorescently labeled using biarsenical (Lumio) compounds. We found that uncoating occurs early in the endocytic pathway and is inhibited by expression of dominant-negative (DN) Rab5, but is not inhibited by DN-Rab7 or DN-Rab11. Uncoating, as defined by the separation of nucleocapsids from M protein, occurred between 15 and 20 minutes post-entry and did not require microtubules or an intact actin cytoskeleton. Unexpectedly, the bulk of M protein remained associated with endosomal membranes after uncoating and was eventually trafficked to recycling endosomes. Another small, but significant fraction of M distributed to nuclear pore complexes, which was also not dependent on microtubules or polymerized actin. Quantification of fluorescence from high-resolution confocal micrographs indicated that after membrane fusion, M protein diffuses across the endosomal membrane with a concomitant increase in fluorescence from the Lumio label which occurred soon after the release of RNPs into the cytoplasm. These data support a new model for VSV uncoating in which RNPs are released from M which remains bound to the endosomal membrane rather than the dissociation of M protein from RNPs after release of the complex into the cytoplasm following membrane fusion.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Purified matrix protein of vesicular stomatitis virus blocks viral transcription in vitro.

One of the major structural proteins of vesicular stomatitis virus is a small, nonglycosylated, matrix protein which associates with the nucleocapsid core during final stages of morphogenesis and budding. Biochemical and genetic studies suggested that the matrix protein regulates RNA synthesis both in vitro and in vivo. We have purified biologically active matrix protein from the virus and have...

متن کامل

Vesicular stomatitis virus matrix protein mutations that affect association with host membranes and viral nucleocapsids.

Viral matrix (M) proteins bind the nucleoprotein core (nucleocapsid) to host membranes during the process of virus assembly by budding. Previous studies using truncated M proteins had implicated the N-terminal 50 amino acids of the vesicular stomatitis virus M protein in binding both membranes and nucleocapsids and a sequence from amino acids 75-106 as an additional membrane binding region. Str...

متن کامل

Plasma membrane microdomains containing vesicular stomatitis virus M protein are separate from microdomains containing G protein and nucleocapsids.

Immunogold electron microscopy and analysis were used to determine the organization of the major structural proteins of vesicular stomatitis virus (VSV) during virus assembly. We determined that matrix protein (M protein) partitions into plasma membrane microdomains in VSV-infected cells as well as in transfected cells expressing M protein. The sizes of the M-protein-containing microdomains out...

متن کامل

Biarsenical labeling of vesicular stomatitis virus encoding tetracysteine-tagged m protein allows dynamic imaging of m protein and virus uncoating in infected cells.

A recombinant vesicular stomatitis virus (VSV-PeGFP-M-MmRFP) encoding enhanced green fluorescent protein fused in frame with P (PeGFP) in place of P and a fusion matrix protein (monomeric red fluorescent protein fused in frame at the carboxy terminus of M [MmRFP]) at the G-L gene junction, in addition to wild-type (wt) M protein in its normal location, was recovered, but the MmRFP was not incor...

متن کامل

Role of residues 121 to 124 of vesicular stomatitis virus matrix protein in virus assembly and virus-host interaction.

The recent solution of the crystal structure of a fragment of the vesicular stomatitis virus matrix (M) protein suggested that amino acids 121 to 124, located on a solvent-exposed loop of the protein, are important for M protein self-association and association with membranes. These residues were mutated from the hydrophobic AVLA sequence to the polar sequence DKQQ. Expression and purification ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2010